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Abstract 
We present a unique modeling capability to understand the global distribution of 

trace gases and aerosols throughout both the troposphere and stratosphere. It includes the 
ability to simulate tropospheric chemistry that occurs both in the gas phase as well as on 
the surfaces of solid particles. We have used this capability to analyze observations from 
particular flight campaigns as well as averaged observed data. Results show the model to 
accurately simulate the complex chemistry occuring near the tropopause and throughout 
the troposphere and stratosphere. 

Introduction 
Accurate global modeling of atmospheric chemical species requires the correct 

simulation of many physical, chemical and dynamical processes, including convection, 
advection, tropospheric and stratospheric chemistry, emissions, deposition, aerosol 
microphysics and chemistry, radiative processes, and cloud processes. Many research 
studies over the last few decades have shown that such processes influence the regional 
and global distributions of aerosols and greenhouse gases and are important in the 
determination of current and projected climate change. Strong evidence exists that 
human activities have changed the chemical and thermal structure of the atmosphere 
(WMOKJNEP 1989, 1991, and 1995), affecting global climate. There have been sizable 
measured increases in the concentrations of carbon dioxide (COz), methane (Cfi), 
nitrous oxide (N20), and chlorofluorocarbons (CFCs) that can be linked to energy 
production and use (Wuebbles and Edmonds, 1992). CFCs have been linked to global 
ozone (03) depletion (Stolarski et al., 1991; Gleason et al., 1993) and are believed to be 
responsible for the observed stratospheric ozone loss in the Antarctic region (Farman et 
al., 1985; Solomon et al., 1986, 1988). In addition, as subsonic air traffic increased 
during the 1970s - 1990s large amounts of nitrogen oxides (NO,), sulfur oxides (SO,), 
water vapor (H20), carbon monoxide (CO), hydrocarbons, soot, and CO2 were emitted 
and may have affected ozone in the middle and upper troposphere - a region where ozone 
change has climatic importance. Understanding these issues involves a combination of 
observational campaigns, laboratory studies, and theoretical/modeling studies. 

Past modeling studies have typically separately dealt with the troposphere and 
stratosphere. In tropospheric models, the stratosphere is seen as a boundary condition; and 
likewise, for stratospheric models, the complex physics of the troposphere are highly 
parameterized to simply provide the correct fluxes of species into its domain. This was 
done primarily to reduce the computational intensity and because it was thought that the 
two regions were distinct. However, there is a growing realization that the region of the 
tropopause (the thin region separating the troposphere and stratosphere) is highly 
important to climate prediction and unknown with respect to chemical processes. Under 
different support, LLNL had developed a stratospheric chemistry model, IMPACT. The 
goal of this project was to advance that model to include the chemistry and physics of 
both the troposphere and stratosphere and then validate model results to observations. 
The following sections describe the IMPACT chemical-transport-deposition model and 
then provide validation studies. 



IMPACT Model Description 
The LLNL (Lawrence Livermore National Laboratory) IMPACT (Integrated 

Massively Parallel Atmospheric Chemical Transport) model is a global, three- 
dimensional chemistry-transport-deposition model that contains both a prognostic 
troposphere and stratosphere. It uses as input meteorological fields from either a General 
Circulation model (GCM) or data assimilated meteorological fields (Rotman et al., 1993; 
Penner et al. 1998). The data assimilated meteorological fields are currently those from 
the Data Assimilation Program at NASA-Goddard. This data is assimilated output from 
the DA0 based GEOS system that covers the time period of the ongoing NASA STRAT 
measurement campaign from May 1995 to present (and should continue for some time 
into the future). The meteorological data is provided on a 2 degree by 2.5 degree 
horizontal resolution with 46 levels in the vertical, from ground to 0.1 mb. This data 
contains a more highly defined boundary layer than previous tropospheric models and the 
resolution allows for analysis of either regional to global scale and tropospheric to 
stratospheric issues. The advantage of using assimilated data is that the model can 
simulate specific historic events, allowing direct model-observation comparisons and thus 
model validation. 

IMPACT is based on an operator splitting method for advection, diffusion, 
convection, photolysis and chemistry. The chemistry equations are solved using 
SMVGEAR II (Jacobson, 1995), a highly optimized version of the original 
predictor/corrector, backward differentiation code of Gear (1971) that uses a variable time 
step, variable order, implicit technique for solving stiff numerical systems with strict error 
control. The chemical continuity equation is solved for each individual species (i.e., no 
lumping of species into chemical families are made). The chemical reaction mechanism 
and applicable parameters are incorporated in files that are generated external to the 
IMPACT model, making changes to the mechanism straightforward. 

The photochemistry includes reactions for both the stratosphere and troposphere. 
Reactions appropriate for the stratosphere include those for the families O,, NO,, ClO,, 
HO,, BrO,, and Cl& and its oxidation. The model also accounts for methane-produced 
water vapor in the stratosphere. Reactions appropriate for the troposphere are based on 
the mechanism of Lurmann et al., 1986. The mechanism has been updated to account for 
isoprene reactions (Paulson and Seinfeld, 1992) reactions in the remote atmosphere 
(Jacob and Wofsy, 1988) and peroxy radical reactions (Kirchner and Stockwell, 1996). 
Species treated include 0 3, OH, PAN, NO, NOz, CO, Car HNO3, isoprene, ethane, 
propane, C4-5 alkanes, C6-8 alkanes, ethene, propene, ketones (including acetone), 
formaldehyde, acetaldehyde, and higher aldehydes. Where applicable, absorption cross 
sections and reaction rate coefficients were taken from DeMore et al., 1997. Many of the 
isoprene reactions have been updated to reflect state-of-the-art knowledge (Connell and 
Atherton, 1999). Results of recent laboratory kinetic studies on higher hydrocarbon 
oxidation steps and their implications for rate constants for homologous reaction have 
also been incorporated (e.g., deGouw and Howard, 1997). A simplified version of the 
chemical mechanism also exists for use with IMPACT. It allows for much faster 
computational speed (and can be used for extremely long simulations, if required). 

Advection in all three directions uses a variable order multidimensional flux form 
of the semi-Lagrangian method, an up-stream-biased monotonic grid point scheme (Lin 
and Rood, 1996). The upstream nature of this method reduces phase errors to a minimum 
and the monotonicity control eliminates the need for a filling algorithm and the severe 
problems that would arise with negative values of chemical species concentrations. This 
scheme also avoids the strict Courant stability problem at the poles, thus allowing large 
time steps to be used, resulting in a highly efficient advection operation. Vertical 



diffusion is done implicitly following the algorithm of Walton et al. (1988). Convective 
transport uses the scheme of Lin (DAO, NASA Goddard, private communication), which 
for infinitely thin layers is essentially the apparent momentum transport of clouds 
(Schneider and Lindzen, 1976). 

IMPACT uses the dry deposition algorithm of Wang et al. (1998). This is an 
improved version of that published in Jacob et al. (1993). This algorithm internally 
computes the local deposition velocity for a tracer species based on aerodynamic 
resistance and surface resistance, (Wesely et al., 1985). For this COSAM Rn/Pb exercise, 
both species were dry deposited, Rn as a gas and Pb as an aerosol. Wet scavenging has 
four separate components: 

l convective wet deposition (Balkanski et al. 1993) - treats the deposition due to 
convective updrafts. This uses the values of convective mass flux in the 
GEOS-STRAT data. 

l large scale (stratiform) scavenging (Giorgi and Chameides 1986) - requires 
separate condensation rates for large scale and convective precipitation, yet 
our GEOS-STRAT meteorological data files contain a single condensation 
rate. The GEOS-STRAT data does include both total convective and large 
scale precipitation reaching the surface. We use this data to partition the entire 
column of condensation rates into convective and large scale components. 
This model then calculates the rate at which these aerosols or gases are 
incorporated into raindrops within the cloud. 

l large scale washout - washout by large scale precipitation in grid boxes below 
cloud is computed as a first order loss process applied to the precipitating 
fraction (F) of the grid box (defined by the maximum value of F in the 
overhead grid boxes). The 3D field of large scale precipitation is calculated 
using the 3D condensation rate along with the 2D fields of convective and 
large scale precipitation reaching the surface. A washout rate constant of 0.1 
(mm-‘) normalized to the precipitation rate was used. 

l convective scavenging (Giorgi and Chameides 1986) (Koch et al. 1996) - 
similar to large scale scavenging but uses the fraction of the condensation rate 
from convective processes as determined by the 2D fields of convective and 
large scale precipitation reaching the surface. Also, when calculating F (the 
fraction of the grid box where precipitation takes place), uses different 
estimates for FO (the maximum value of F, L (the cloud liquid water content), 
Tc (the duration of the precipitation event), and beta-min (the minimum value 
for the rate of conversion of cloud water to precipitation). 

Photolysis rates are obtained by a clear-sky lookup table developed using 
methodologies in Douglass et al., 1997. Normalized radiative fluxes calculated from the 
model of Anderson et al. (1995) are tabulated as a function of wavelength, solar zenith 
angle, overhead ozone and pressure. Temperature dependent molecular cross sections, 
quantum yields, and solar flux are tabulated separately. Rates are adjusted in the 
troposphere depending on the presence of clouds and the archived cloud fraction. This 
adjustment is done to correctly mimic OH levels and methyl chloroform lifetimes. 
Heterogeneous reactions with rates that depend on gas-particle collision rates, such as the 
hydrolysis of N205, are easily included. This approach can capture the gross features of 
polar stratospheric heterogeneous chemistry. 

Given the completeness of the physics and mathematics and its high resolution, 
simulations with the IMPACT model are computationally intensive. For this reason, 
IMPACT has been developed and implemented on massively parallel computers such as 
the Cray T3E and the IBM SP2 (it also runs on Cray C and J9O’s, workstations and other 
massively parallel computers). The ability to compute on parallel machines has greatly 



advanced our throughput capabilities. With approximately 100 species and a 2” x 2.5” 
horizontal resolution with 46 levels, a one year simulation requires roughly 400 hours on 
121 processors of a T3E-900. (This same simulation would require roughly 5,000 hours 
on a single Cray C-90 processor.) At 4” x 5” resolution, the computational time on the 
T3E-900 is 60 hours. This model was also used in the DOE-PATHFORWARD project in 
collaboration with COMPAQ computer. COMPAQ ported IMPACT to their new 
Quadrics connected parallel platform. Results show performance to be very good; nearly 
2 ‘/2 times faster that the Cray T3E-900. 

We are presently developing a chemistry model which will treat gas phase sulfur 
reactions using prognostic 03, NOs, and OH. We will also include models for 
heterogeneous stratospheric sulfur reactions as well as aqueous sulfur reactions in the 
troposphere. 

IMPACT model applications and evaluation 
Previously, the IMPACT model has been used to study stratospheric distributions 

of chemical species and tracer distributions in the stratosphere (Rotman et al., 1993). The 
IMPACT model was also used in a budget study of upper tropospheric NO, (Penner et al., 
1998). This study used an earlier version of IMPACT to quantify the contributions to the 
NO, cycle from in-situ sources (lightning and aircraft emissions), convection from the 
surface (fossil fuels, biomass burning and soils), stratospheric transport and 
photochemical recycling of nitric acid (Penner et al., 1998). Comparing predictions from 
IMPACT and the GRANTOUR global model showed the major difference in NO, 
budgets resulted from different treatments of vertical transport, especially convection. 
Additionally, accurately defining the tropopause also affected model results. 

The IMPACT model was also used to simulate the 222Rn and 210Pb cycles, as part 
of our participation in the Comparison of the Performance of Large Scale Models in 
Simulating Atmospheric Sulphate Aerosols (COSAM) (Bergmann et al., 1998). This 
international comparison study convened in Halifax, N.S., in October 1998. It was a 
follow-up to ;e.;ent WCRP workshops on the transport and scavenging of tracers (e.g. 
CFC-11 and Rn).22pgure 1 shows the IMPACT predicted June-Jul&August average 
mixing ratios for (a) Rn at pressure = 300 hPa and (b) zonal average Rn. Our model 
predicted 222Rn compares favorably with other models (Barrie et al., 1999; Lohmann et 
al., 1999), although IMPACT may have stronger convection in the upper troposphere than 
others. 

More recently, the IMPACT model has been used to study the photochemical 
cycles important in the upper troposphere and lower stratosphere. The results have been 
compared with measurements from aircraft sampling campaigns. Specifically, an 
IMPACT simulation driven by the meteorological fields from autumn 1997 was 
compared to results from NASA’s SONEX campaign, flown over the North Atlantic 
during the same time period (fall 1997) (Atherton et al., 1998). SONEX addressed the 
role of lightning and aircraft NO, on upper tropospheric and lower stratospheric air 
composition (see, e.g., Chatfield et al., 1999; Jaegle et al., 1999; Singh et al., 1999; 
Thompson et al., 1999). The SONEX mission consisted of roughly 14 flights during 
October and November 1997. The IMPACT model simulation period began on June 1, 
1997. The results discussed below are from two sampling days during October 1997. 

Figure 2 shows the IMPACT predictions and SONEX 0s observations for flight 
#3 on October 13, 1997. This flight extended from NASA Ames, California to Bangor, 
Maine. Both IMPACT and the UV-DIAL observations (Browell, pers. comm., 1999) 
show the presence of strong stratospheric influence at longitudes between 90W and 



IOOW. This influence is seen as low as 4-6 km, well into the troposphere. The IMPACT 
model reproduces not only the location, but also magnitude of this phenomenon. 

Figure 3 shows the IMPACT predicted results for October 15, 1997, along with 
the ozone distributions obtained using UV-DIAL sampling techniques (Browell, pers. 
comm., 1999) on SONEX flight #4 (also October 15, 1997). Flight #4 traversed the 
North Atlantic, from Bangor, Maine to Shannon, Ireland, at latitudes of 53 - 57”N. 
Plotted in the same figure are the IMPACT results for 56”N. The model predicts a strong 
stratospheric 03 influence in the same region as the UV-DIAL observations. As before, 
the model reproduces well the location and concentrations of ozone associated with this 
stratospheric influence. 

Figure 4 plots monthly average October 1997 IMPACT profiles for a number of 
species, along with measurements from two different aircraft campaigns, TRACE-A and 
PEM-Tropics. Because the model results are for a different year than the sampling 
campaigns, an identical comparison should not be expected. Some generalities, however, 
may be identifiable. In Figure 4a, the IMPACT model reproduces fairly well the profiles 
of 03, C3Hs, PAN, and CHjOOH. IMPACT also predicts well the structure of the NOx, 
CO, and CzHe profiles, although the model concentrations are slightly less than the 
measurements. The model-predicted concentrations of a number of species at the surface 
are slightly lower than the measurements, but that may depend on the particular amount 
of biomass burned during the sampling campaign, the role of local convective events, etc. 

In Figure 4b, the model predicts distributions of O,, NOx, CO, HO,, PAN, and 
CH,OOH that are similar to observations (although 0, tends to be too high above 6km). 
The model predicts higher 0, than measured in the upper troposphere, but that again may 
depend on synoptic meteorological events. The model tends to underpredict C,H, and 
C,H,. As occurs in a number of models, the predicted HNO, concentrations are higher 
than observed, possibly due to a process that converts HNO, to NOn but is not represented 
in current models. 

Conclusion 
We have developed and applied the IMPACT chemistry-transport-deposition 

model. It provides the capability to simulate the distribution of important trace species 
throughout the troposphere and stratosphere. Applications show the model to accurately 
simulate the vertical and horizontal distribution of many important trace species, in 
particular ozone, throughout the entire extent of the atmosphere. Some issues remain. The 
model produces somewhat high levels of ozone in the upper troposphere and high values 
of nitric acid throughout the atmosphere; these will be investigated further. This modeling 
capability will provide the central tool for continued analysis of atmospheric chemistry 
and the important links of chemistry to climate change. 
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Figure 1. IMPACT model predictions of 222 Rn for June-July-August, in units of 1 x 10m21 mol/ 
mol, (a) pressure = 300 hPa and (b) zonal average. 
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Figure 2: IMPACT model prediction 10-13-97 19:00 UT (upper), compared to SONEX 
flight #3, Ames to Bangor 10-13-97 cross-continent sampling at -11 km (lower). 
M ission summary notes “... W ith exception of air masses near storm  system (... near M isissouri at 
95W) air over continent was clean. West of storm  system ozone=60-65 ppb...” 
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Figure 4. IMPACT predicted October 1997 average concentrations (solid lines) for a number of 
species plotted with measurements (symbols) from (a) TRACE-A (Africa, Sept./Ott. 1992, Fish- 
man et al., 1996) and (b) PEM-Tropics (Tahiti, Aug/Sept. 1996, Hoe11 et al., 1999). 
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Figure 3 : IMPACT model prediction lo-1597 16:00 UT (upper), compared to SONEX 
flight #4 10-15-97, Bangor to Shannon (lower). 
Mission Summary notes that, “... At 15:03, begin ascent to FL250, which was inside inversion 

032250 ppbv, At 2OW, at FL290, tropospheric air masses resume...” 


